Abstract

Highly charged, single α-helical (SAH) domains contain a high percentage of Arg, Lys, and Glu residues. Their dynamic salt bridge pairing creates the exceptional stiffness of these helical rods, with a persistence length of more than 200 Å for the myosin VI SAH domain. With the aim of modulating the stiffness of the helical structure, we investigated the effect, using NMR spectroscopy, of substituting key charged Arg, Lys, Glu, and Asp residues by Gly or His. Results indicate that such mutations result in the transient breaking of the helix at the site of mutation but with noticeable impact on amide hydrogen exchange rates extending as far as ±2 helical turns, pointing to a substantial degree of cooperativity in SAH stability. Whereas a single Gly substitution caused transient breaks ∼20% of the time, two consecutive Gly substitutions break the helix ∼65% of the time. NMR relaxation measurements indicate that the exchange rate between an intact and a broken helix is fast (>300,000 s−1) and that for the wild-type sequence, the finite persistence length is dominated by thermal fluctuations of backbone torsion angles and H-bond lengths, not by transient helix breaking. The double mutation D27H/E28H causes a pH-dependent fraction of helix disruption, in which the helix breakage increases from 26% at pH 7.5 to 53% at pH 5.5. The ability to modulate helical integrity by pH may enable incorporation of externally tunable dynamic components in the design of molecular machines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.