Abstract

The development of a facile synthesis and controllable layer stacking approach for covalent organic frameworks (COFs) is an important issue for modulating their properties and realizing their application diversity. Herein, three COF isomers with different stacking models (eclipsed AA, staggered AB, and ABC stacking) were obtained by modulating the reaction temperature and solvent medium. Experimental and theoretical calculations show that the ABC stacking isomer obtained at room temperature is the kinetic product, while the AA stacking isomer prepared by the solvothermal method is a thermodynamic product. Owing to the tautomerism involved in the reaction process, these isomers possess different ratios of enol and keto forms. Thus, they exhibit different generation efficiencies of Type I and Type II reactive oxygen species (ROS). The ABC stacking isomers could be employed as metal-free heterogeneous photocatalysts for visible-light-induced oxidation of amines to imines, owing to the highest generation efficiency of Type I ROS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.