Abstract

Adsorption for recovery of low-concentration platinum (Pt) from the complex composition of acidic digestates was challenging because of slow kinetic and poor affinity. It was expected to be overcome by the improvement of pore size distribution and adsorption site activity. Herein, a series of Prussian blue etchings (PBE) with porosity-rich and activity-high cyano (CN) was synthesized to recover low-concentration Pt. The N2 isotherm results showed that the pore structure evolved from mesoporous to microporous. The Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations results revealed that the modulation of electronic structure converted FeII to FeIII in [FeII(CN)6]4−. The coexistence of micro- and meso-pore structures provided channels to accelerate adsorption and ensured PtII enrichment. The regulation of Fe valence state activated CN, which reinforced the strength of coordination interaction between Pt and Fe-CN- at N-atom. The adsorption rate and maximum capacity of PBE1 were 4.4 and 2.5 times higher than those of PB, respectively, due to the dual efficacy of accelerated kinetic and reinforced coordination. This study systematically analyzes the pivotal role of pore and electronic structure modulation in adsorption kinetic and affinity, which provides a novel strategy for PtII targeted recovery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call