Abstract

The production of hydrophobic and oil resistant cellulosic fibers usually requires severe chemical treatments and generates toxic by-products. Alternative approaches such as biocatalysis use milder conditions; lipase-catalyzed methods for grafting nanocellulose with hydrophobic ester moieties have been reported. Here, we investigate the lipase-catalyzed esterification of cellulose fibers, in native form or pretreated with 1,4-β-glucanases, and cellulose nanocrystals (CNC) in solvent-free conditions. The fibers were compared for degree of ester formation after incubation with methyl myristate and lipase at 50 °C. After washing, the grafting of fatty esters on cellulose was confirmed by ATR-FTIR and the degree of substitution determined by 13C CP/MAS NMR (from 0.04 up to DS 0.1) confirming successful esterification. Optical photothermal infrared (O-PTIR) spectroscopy showed strongly localized presence of ester moieties on cellulose. Functional properties mirrored the degree of substitution of the cellulose materials whereby cellulose esters made with glucanase-pretreatment produced the highest water contact angle of 117° ± 9 and esterified cellulose blended at 10 % w/w content in paper composites showed significant differences in hydrophobicity and lipophilicity compared to plain paper. The esterification of cellulose was completely reversed by lipase treatment in aqueous media. These ester-functionalized fibers show potential in a wide range of packaging applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call