Abstract
The exploration of indurative and stable low-cost catalysts for hydrogen evolution reaction (HER) is of great importance for hydrogen energy economy, but it still faces challenges. Herein, we report a Cl-doped Ni3S2 (Cl-Ni3S2) nanoplate catalyst vertically grown on Ni foam with outstanding activity and durability for HER, which only requires an overpotential of 67 mV to reach a current density of 10 mA cm-2 in alkaline media and exhibits negligible degradation after 30 h of operation. Both the advanced X-ray absorption fine structure (XAFS) and density functional theory (DFT) calculation validate that Cl doping can optimize the electronic structure and the intrinsic activity of Ni3S2. This study devoted to the revelation of the impact of ionic doping on the activity of catalysts at the atomic scale can provide the direction for the rational design of novel and advanced HER electrocatalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.