Abstract

First-principles calculations are used to investigate the electronic and magnetic properties of substitutional doping of transition metal (TM) atoms (V, Cr, Mn, Co, Ni, Cu and Zn) on marcasite FeS2 (m-FeS2). It is energetically favorable to combine TM atoms into m-FeS2 under S-rich condition. The electronic properties of m-FeS2 are changed significantly due to the introduced impurity states by TM atoms. Simultaneously, TM atoms doping can induce magnetism in m-FeS2 except Cu and Zn. The magnetism stem from the localized unpaired 3d electrons of TM atoms, a small amount of magnetic moments are induced in the neighboring Fe and S atoms due to the p–d hybridization mechanism. V-, Mn- and Ni-doped m-FeS2 compounds exhibit magnetic semiconducting character, Cr-doped compound display a half-metallic property, while Cu-doped compound shows non-magnetic metallic property, Zn-doped compound behavior as a non-magnetic semiconductor. More interestingly, a single Co-doped compound shows magnetic semiconducting but double Co-doped compound shows half metallic character. In addition, Co- and Cr-doped compounds prefer ferromagnetic state which is important for spintronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call