Abstract

Encapsulating enzyme within MOF (enzyme-MOF) gives rise to new opportunity to improve the fragility of enzyme, but practical application of enzyme-MOF composite is far from being realized. The development of a novel enzyme-MOF composite system should simultaneously guarantee the enhanced activity and controllably complete recycling, and only in this way can we efficiently and economically utilize the enzyme-MOF composite. Herein, we addressed all these fundamental limitations of current enzyme-MOF composite by establishing aptamer-functionalized enzyme-MOF composite (HRP-ZIF-8@P1). HRP-ZIF-8@P1 relied on automatic structure switch of aptamer-target binding and aptamer-cDNA (complementary DNA) hybridization, achieving effectiveness in self-enriching substrate around HRP-ZIF-8@P1 to boost enzymatic activity first, subsequently hybridizing spontaneously with magnetically controllable cDNA sequence (Fe3O4@P3) to completely recover the HRP-ZIF-8@P1, where preferentially capturing substrate could further induce the release of the hybridized HRP-ZIF-8@P1 for automatically starting the cyclic enzyme catalysis. A 5.6-fold enhancement in the catalytic efficiency for BPA degradation was endowed, and 94.7% catalytic activity was retained for 8 consecutive degradations of BPA, both of which were even more significant than HRP-ZIF-8. Additionally, remarkable stability of HRP-ZIF-8@P1 was afforded by dual-layer protection of ZIF-8 and P1 in denaturing conditions. Taking the possibility of discovering an aptamer for any target into account, the aptamer-functionalized enzyme-MOF composites provide a generic and simple guide for simultaneously boosting enzymatic activity and controllably full recycling the enzyme-MOF systems, accelerating their commercial utilizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.