Abstract

Background Radiofrequency ablation of intramural ventricular substrate is often limited by insufficient tissue penetration despite high energy settings. As lesion dimensions have a direct and negative relationship to impedance, reducing the baseline impedance may increase the ablation effect on deep ventricular tissue. Methods This study included 16 patients with ventricular tachycardia or frequent ventricular premature complexes refractory to ablation with irrigated catheters. After a failed response to radiofrequency ablation, impedance was modulated by adding or repositioning return patches in an attempt to decrease the circuit impedance. Ablation was repeated at a similar location and power settings, and the effect on arrhythmia suppression and adverse effects were evaluated. Results Six patients with idiopathic ventricular premature complexes originating from the left ventricular summit (n=4) or papillary muscles (n=2), 6 patients with noninfarct related ventricular tachycardia and 4 patients with infarct-related ventricular tachycardia had unsuccessful response to radiofrequency ablation at critical sites (number of applications: 10.4±3.1, power: 42.3±2.9 W, duration: 55.3±25.5 seconds, impedance reduction: 14.6±3.5 Ω, low-ionic solution was used in 81.25%). Modulating the return patches resulted in reduced baseline impedance (111.7±8.2 versus 134.7±6.6 Ω, P<0.0001), increased current output (0.6±0.02 versus 0.56±0.02 Amp; P<0.0001) and greater impedance drop (16.8±3.0 Ω, P<0.001). Repeat ablation at similar locations had a successful effect in 12 out of 16 (75.0%) patients. During a follow-up duration of 13±5 months, 10 out of 12 (83.3%) patients remained free of arrhythmia recurrence. The frequency of steam pops was similar between the higher and lower baseline impedance settings (7.1 versus 8.2%; P=0.74). Conclusions In patients with deep ventricular substrate, reducing the baseline impedance is a simple, safe, and effective technique for increasing the effect of radiofrequency ablation. However, its combination with low-ionic solutions may increase the risk for steam pops and neurological events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call