Abstract
This study contributes to a comprehensive understanding of the interactions between CO2 and amines at the molecular level by exploring the rotational spectra of binary complexes between CO2 and eight different amines through pulsed-jet Fourier transform microwave spectroscopy and quantum chemical calculations. The findings reveal a consistent pattern in which CO2 is bonded to the amino group, primarily through a C···N tetrel bond, while being supported by C-H···O/C hydrogen bonds. Notably, the binding energies increase from primary through tertiary amines and with increasing chain length of the alkyl groups. These groups are found to enhance the electron density at the amino group significantly, thereby facilitating the formation of stronger C···N tetrel bonds. The insights provided into how the interaction strength is modulated by the geometries of amines are deemed essential for the design of more effective CO2 adsorption materials, thus advancing carbon capture technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.