Abstract

Photocatalytic hydrogen production viawater splitting is the subject of intense research. Photoinduced electron transfer (PET) between a photosensitizer (PS) and a proton reduction catalyst is a prerequisite step and crucial to affecting hydrogen production efficiency. Herein, three photoactive metal-organic framework (MOF) systems having two different PET processes where PS and Co(II) centers are either covalently bonded or coexisting to drive photocatalytic H2 production arebuilt. Compared to these two intramolecular PET systems including CoII -Zn-PDTP prepared from the post-synthetic metalation toward uncoordinated pyridine N sites of Zn-PDTP and sole cobalt-based MOF Co-PDTP, the CoII (bpy)3 @Zn-PDTP system impregnated by molecular cocatalyst possessing intermolecular PET process achieves the highest H2 evolution rate of 116.8mmol g-1 h-1 over a period of 10h, about 7.5 and 9.3 times compared to CoII -Zn-PDTP and Co-PDTP in visible-light-driven H2 evolution, respectively. Further studies reveal that the enhanced photoactivity in CoII (bpy)3 @Zn-PDTP canbe ascribed to the high charge-separation efficiency of Zn-PDTP and the synergistic intermolecular interaction between Zn-PDTP and cobalt complexes. The present work demonstrates that the rational design of PET process between MOFs and catalytic metal sites can be a viable strategy for the development of highly efficient photocatalysts with enhanced photocatalytic activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.