Abstract

Acetoin, giving a creamy yogurt aroma and buttery taste, exists in cereal vinegar as an important flavor substance and is mainly produced by the metabolism of Lactobacillus and Acetobacter during multispecies solid-state acetic acid fermentation. However, the impacts of Lactobacillus-Acetobacter interactions on acetoin accumulation and the microbial metabolism during acetic acid fermentation are not completely clear. Here, six strains isolated from vinegar fermentation culture and associated with acetoin metabolism, namely, Lactobacillus reuteri L-0, L. buchneri F2-6, L. brevis 4–20, L. fermentum M10-7, L. casei M1-6 and Acetobacter pasteurianus G3-2, were selected for microbial growth and metabolism analysis in monoculture and coculture fermentations. Lactobacillus sp. and A. pasteurianus G3-2 respectively utilized glucose and ethanol preferentially. In monocultures, L. casei M1-6 (183.7 mg/L) and A. pasteurianus G3-2 (121.0 mg/L) showed better acetoin-producing capacity than the others. In the bicultures with Lactobacillus sp. and A. pasteurianus G3-2, biomass analysis in the stationary phase demonstrated that significant growth depressions of Lactobacillus sp. occurred compared with monocultures, possibly due to intolerance to acetic acid produced by A. pasteurianus G3-2. Synergistic effect between Lactobacillus sp. and A. pasteurianus G3-2 on enhanced acetoin accumulation was identified, however, cocultures of two Lactobacillus strains could not apparently facilitate acetoin accumulation. Coculture of L. casei M1-6 and A. pasteurianus G3-2 showed the best performance in acetoin production amongst all mono-, bi- and triculture combinations, and the yield of acetoin increased from 1827.7 to 7529.8 mg/L following optimization of culture conditions. Moreover, the interactions of L. casei M1-6 and A. pasteurianus G3-2 regulated the global metabolism of vinegar microbiota during fermentation through performing in situ bioaugmentation, which could accelerate the production of acetic acid, lactic acid, acetoin, ethyl acetate, ethyl lactate, ligustrazine and other important flavoring substances. This work provides a promising strategy for the production of acetoin-rich vinegar through Lactobacillus sp.-A. pasteurianus joint bioaugmentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call