Abstract

Modulation of the electronic interaction between the metal and support has been verified as a feasible strategy to improve the electrocatalytic performance of supported-type catalysts. Here, we have successfully synthesized an electrocatalyst of Ni2P nanoparticles (NPs) anchored on B, N co-doped graphite-like carbon nanosheets (Ni2P@B, N-GC), and elucidated the main mechanism by which B atoms doping enhances electrocatalytic hydrogen evolution reaction (HER) performance. The B atoms with electron-rich characteristic not only modulate the electronic structure on carbon skeleton, but also regulate the interfacial electronic interaction between Ni2P NPs and the carbon skeleton, which can lead to the increased available electron density of Ni sites. Such optimization is conducive to accelerating proton transfer and promoting reactive activity. As revealed, the Ni2P@B, N-GC catalyst with B atoms doping exhibits superior performance to the Ni2P@N-GC catalyst in acidic, neutral and alkaline medias. In addition, the assembled Ni(OH)2@B, N-GC||Ni2P@B, N-GC electrolyzer displays prominent overall water splitting performance in alkaline solution, which only demands 1.57 V to reach 10 mA/cm2, and in complicated natural seawater electrolyte, as low as 1.59 V. Hence, the B atoms doping strategy shows the significant enhancement for HER electrocatalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call