Abstract

Difluoroboron β-diketonate compounds exhibit solid-state luminescence phenomena. Among these are reversible mechanochromic luminescence (ML), aggregation induced emission (AIE), and mechanochromic luminescence quenching (MLQ). These properties can be tuned by alterations to the molecular structure. Dyes with varying halide substituents exhibit tunable ML, MLQ, and solid-state emission with high quantum yields. A series of difluoroboron dibenzoylmethane (BF2dbm) dyes with iodide and alkoxyl substituents (BF2dbm(I)OR) were synthesized where R = CH3 (C1), C5H11 (C5), C6H13 (C6), C12H25 (C12), and C18H37 (C18)). The 4-iodo parent compound BF2dbm(I) (H) was made for comparison. By keeping the heavy atom static, the dependence of ML properties on alkyl chain length was probed. The hydrogen derivative is only weakly emissive as a solid and exhibited minimal mechanoresponsive behavior. In contrast, alkoxy dyes exhibited tunable ML and MLQ properties depending on the length of the alkyl chain. Longer chain dyes co...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call