Abstract

Periodic structures and the coupling of multiorder parameters in complex oxides heterojunctions can generate exotic properties, of interest both for fundamental researches and for device applications. Here, we report a self-assembling in-plane periodic domain structure, and the resulting rich magnetic states, in a h-YMnO3 thin film fabricated on c-face sapphire substrate. Detailed structural investigations at atomic-level reveal the fashion of alternating domains under tensile or compressive strains separated by a boundary region. Tuned by this in-plane domain structure, the abnormal magnetic properties, such as the ferromagnetic enhancement and the unexpected spin glass state (below ∼38 K), are realized. Moreover, the existence of ferroelectric polarization is confirmed by scanning transmission electron microscopy, which brings in the chances of magnetoelectric coupling effect. These results manifest the close connections between the magnetic properties and such in-plane microstructures, suggesting the possibility of tuning the coupling effects via strain engineering in the hexagonal manganite film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.