Abstract
Because of their intriguing luminescence performances, ultrasmall Au nanoparticles (AuNPs) and their assemblies hold great potential in diverse applications, including information security. However, modulating luminescence and assembled shapes of ultrasmall AuNPs to achieve a high-security level of stored information is an enduring and significant challenge. Herein, we report a facile strategy using Pluronic F127 as an adaptive template for preparing Au nanoassemblies (AuNAs) with controllable structures and tunable luminescence to realize hierarchical information encryption through modulating excitation light. The template guided ultrasmall AuNP in situ growth in the inner core and assembled these ultrasmall AuNPs into intriguing necklace-like or spherical nanoarchitectures. By regulating the type of ligand and reductant, their emission was also tunable, ranging from green to the second near-infrared (NIR-II) region. The excitation-dependent emission could be shifted from red to NIR-II, and this significant shift was considerably distinct from the small range variation of conventional nanomaterials in the visible region. In virtue of tunable luminescence and controllable structures, we expanded their potential utility to hierarchical information encryption, and the true information could be decrypted in a two-step sequential manner by regulating excitation light. These findings provided a novel pathway for creating uniform nanomaterials with desired functions for potential applications in information security.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.