Abstract

Macrophage uptake of nanoparticles is highly dependent on the physicochemical characteristics of those nanoparticles. Here, we have created a collection of lipid-polymer nanoparticles (LPNPs) varying in size, stiffness, and lipid makeup to determine the effects of these factors on uptake in murine bone marrow-derived macrophages. The LPNPs varied in diameter from 232 to 812 nm, in storage modulus from 21.2 to 287 kPa, and in phosphatidylserine content from 0 to 20%. Stiff, large nanoparticles with a coating containing phosphatidylserine were taken up by macrophages to a much higher degree than any other formulation (between 9.3× and 166× higher than other LPNPs). LPNPs with phosphatidylserine were taken up most by M2-polarized macrophages, while those without were taken up most by M1-polarized macrophages. Differences in total LPNP uptake were not dependent on endocytosis pathway(s) other than phagocytosis. This work acts as a basis for understanding how the interactions between nanoparticle physicochemical characteristics may act synergistically to facilitate particle uptake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call