Abstract

The acid sites of zeolite are important local structures to control the products in the chemical conversion. However, it remains a great challenge to precisely design the structures of acid sites, since there are still lack the controllable methods to generate and identify them with a high resolution. Here, we use the lattice mismatch of the intergrown zeolite to enrich the inherent Lewis acid sites (LASs) at the interface of a mortise-tenon ZSM-5 catalyst (ZSM-5-MT) with a 90° intergrowth structure. ZSM-5-MT is formed by two perpendicular blocks that are atomically resolved by integrated differential phase contrast scanning transmission electron microscopy (iDPC-STEM). It can be revealed by various methods that novel framework-associated Al (AlFR) LASs are generated in ZSM-5-MT. Combining the iDPC-STEM results with other characterizations, we demonstrate that the partial missing of O atoms at interfaces results in the formation of inherent AlFR LASs in ZSM-5-MT. As a result, the ZSM-5-MT catalyst shows a higher selectivity of propylene and butene than the single-crystal ZSM-5 in the steady conversion of methanol. These results provide an efficient strategy to design the Lewis acidity in zeolite catalysts for tailored functions via interface engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.