Abstract
We set out to examine the indicators of microhemodynamics and tissue oxidative metabolism in rats after their tenfold exposure to extremely high-frequency low-intensity electromagnetic radiation (EHF EMR). The aim was to elucidate the specifics of skin microcirculation and tissue oxidative metabolism following exposure to tenfold electromagnetic radiation of extremely high frequency. The experiment was carried out on 40 mature male Wistar rats weighing 200–220 g, which were kept in standard vivarium conditions under natural light regimen. The animals were divided into two groups with 20 rats each. The animals in the first group were biological controls and were exposed to false EHF EMR (placebo); the animals in the second group were exposed to mm-exposure in the morning, 10 sessions daily. On the 10th day of EMR exposure, the indicators of skin tissue fluorescence on the tail base were recorded. Tenfold exposure to low-intensity EHF EMR was shown to increase the concentration and intensity of NADH fluorescence, as well as the FAD and redox ratio. This indicates an increased cellular demand for ATP and the predominance of oxidative phosphorylation over other processes, thus demonstrating the activation of the respiratory chain. At the same time, an increase in endothelium-dependent vasodilation, a decrease in peripheral resistance, an increase in blood flow to the nutritive microvascular bed, and an improvement in venular outflow were observed in the microcirculatory bed. The conclusion is made that the modulating effect of EHF EMR is manifested in the rearrangements of correlations. Thus, the coefficient of variation comes to the fore – the final calculated indicator of microcirculation, which has strong negative associations with all indicators of tissue metabolism (FAD, NADH, RR). In addition, the amplitudes of endothelial rhythms associated with periodic releasing of nitric oxide by the endothelium show a strong negative association with FAD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.