Abstract

Programmable nucleases like the popular CRISPR/Cas9 system allow for precision genome engineering by inducing a site-specific DNA double strand break (DSB) within a genome. The DSB is repaired by endogenous DNA repair pathways, either nonhomologous end joining (NHEJ) or homology directed repair (HDR). The predominant and error-prone NHEJ pathway often results in small nucleotide insertions or deletions that can be used to construct knockout alleles. Alternatively, HDR activity can result in precise modification incorporating exogenous DNA fragments into the cut site. However, genetic recombination in mammalian systems through the HDR pathway is an inefficient process and requires cumbersome laboratory methods to identify the desired accurate insertion events. This is further compromised by the activity of the competing DNA repair pathway, NHEJ, which repairs the majority of nuclease induced DNA DSBs and also is responsible for mutagenic insertion and deletion events at off-target locations throughout the genome. Various methodologies have been developed to increase the efficiency of designer nuclease-based HDR mediated gene editing. Here, we review these advances toward modulating the activities of the two critical DNA repair pathways, HDR and NHEJ, to enhance precision genome engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.