Abstract
AbstractGlycans anchored on cell‐surface receptors are active modulators of receptor signaling. A strategy is presented that enforces transient changes to cell‐surface glycosylation patterns to tune receptor signaling. This approach, termed in situ glycan editing, exploits recombinant glycosyltransferases to incorporate monosaccharides with linkage specificity onto receptors in situ. α2,3‐linked sialic acid or α1,3‐linked fucose added in situ suppresses signaling through epidermal growth factor receptor and fibroblast growth factor receptor. We also applied the same strategy to regulate the electrical signaling of a potassium ion channel–human ether‐à‐go‐go‐related gene channel. Compared to gene editing, no long‐term perturbations are introduced to the treated cells. In situ glycan editing therefore offers a promising approach for studying the dynamic role of specific glycans in membrane receptor signaling and ion channel functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.