Abstract
The association of a non-ionic surfactant of polyoxyethylene-p-(1,1,3,3-tetramethylbutyl)phenyl ether (Triton X) series with 2-AS in aqueous solution has been studied by means of steady-state, time-resolved fluorescence and fluorescence anisotropy techniques. The effect of the hydrophobic chain length on the structural dynamism of the fluorophore has been reported. Experimental results demonstrate that the equilibrium of this dynamism is sensitive to the environment. The association constant of the probe molecule with the non-ionic micelles of Triton X (TX), location of the probe in the micellar environment, have been determined from the change in emission characteristics of the probe as a function of surfactant concentration. The rate constant of quenching and mode of quenching of probe in micellar media have been ascertained. Quantitative estimates of the micropolarity at the binding sites of the probe molecule have been determined. Some of the environment-dependent relevant fluorescence parameters, fluorescence anisotropy ( r), have been monitored for exploring the imposed motional restriction of the microenvironment around the probe. An attempt has been made to correlate the steady-state results with time resolved study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.