Abstract
In recent years, optical forces and torques have been investigated in sub-wavelength evanescent fields yielding a rich phenomenology of fundamental and applied interest. Here we demonstrate analytically that guided modes carrying transverse spin density induce optical torques depending on the character, either electric or magnetic, of the dipolar particles. The existence of a nonzero longitudinal extraordinary linear spin momentum suitable to manipulate optical forces and torques modifies optical forces either enhancing or inhibiting radiation pressure. Hybrid modes supported by cylindrical waveguides also exhibit intrinsic helicity that leads to a rich distribution of longitudinal optical torques. Finally, we show that chiral dipolar particles also undergo lateral forces induced by transverse spin density, amenable to chiral particle sorting. These properties are revealed in configurations on achiral and chiral dipolar particles within confined geometries throughout the electromagnetic spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.