Abstract

We describe a new technology for superconducting quadrupole magnets especially for use in particle accelerators. The principle is based on the application of a sinusoidal modulation to the axial positions of the conductor windings in solenoids. The method can also be employed to produce higher-order multipole fields. Due to their solenoid-like geometry, these coils are significantly simpler to manufacture than standard (racetrack) cosine-2-theta coils and have significantly smaller systematic field errors without using any field-shaping spacers. When two complementary coil layers (with opposite current flow) are combined, the solenoid components of the fields are cancelled and the quadrupole or higher-order fields add. An example of such a design is described which generates a gradient of 130 T/m with systematic errors less than 10/sup -8/ at 67% of the aperture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.