Abstract

During the production of ethanol from lignocellulose-derived sugars, recombinant yeasts tend to utilize xylose and arabinose after glucose exhaustion. So far, many glucose-insensitive pentose transporters have been reported to counteract this phenomenon, but few studies have described intracellular factors. In this study, the combination of adaptive evolution, comparative genomics, and genetic complementation revealed that the hexokinase-deficient (Hxk0) arabinose-fermenting Saccharomyces cerevisiae requires the arabinose transporter variant Gal2-N376T and the mutations of guanine nucleotide exchange factor Cdc25 to overcome glucose restriction during arabinose assimilation. The results showed that the Hxk0 recombinant yeasts could lower the metabolic/physiological threshold of cell proliferation by downregulating the intracellular cAMP levels, resulting in smaller cells and increased arabinose assimilation under glucose restriction. In the medium containing 80 g/L glucose and 20 g/L arabinose, the evolved strain restoring the hexokinase activity completed fermentation at 22 h, compared to 24 h for the parental strain. Overall, the experimental results provide new insights into glucose repression of biorefinery yeasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call