Abstract

Over the past few years, blockchain technology has attracted much attention. The smart contract is a computer program that implements and executes transactions and business logic on the blockchain. Unlike traditional general-purpose programming languages, the modularization techniques of programming languages for the smart contracts are still immature. Specifically, a suitable modularization mechanism for cross-cutting concerns is still not available. From a software engineering perspective, the modularization of cross-cutting concerns is a fundamental issue that can dramatically affect the contracts' maintainability and readability. As a result, reducing the redundant cross-cutting logic is still a challenging task. This paper proposes a practically viable approach that supports Aspect-Oriented Programming (AOP) for smart contract development on Ethereum-based blockchains. We suggest a set of extension to Solidity, a programming language that runs on the Ethereum-based blockchains, that facilitates AOP semantics and behaviors. As a proof of concept, we also realize the weaving module for the extension. The feasibility of the proposed approach is demonstrated by a case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.