Abstract
Popularization of lithium-sulfur batteries (LSBs) is still hindered by shuttle effect and volume expansion. Herein, a new modularized sulfur storage strategy is proposed to solve above problems and accomplished via employing 100% space utilization host material of cobalt loaded carbon nanoparticles derived from ZIF-67. The modular dispersed storage of sulfur not only greatly increases the proportion of active sulfur, but also inhibits the occurrence of volume expansion. Meanwhile, 100% space utilization host material can greatly improve the conductivity of the cathode, provide a larger electrolyte wetting interface and effectively suppress the shuttle effect. Moreover, loaded cobalt particles have high catalytic activity for electrochemical reaction and can effectively improve the redox kinetics. The cell with new cathode host material carbonized at 650 °C (ZIF-67 (650 °C)) exhibits superior rate performance and can maintain a high specific capacity of 950 mAh/g after 100 cycles at 0.2 C, showing a good cycle stability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.