Abstract
The Bershadsky–Polyakov algebras are the original examples of nonregular W-algebras, obtained from the affine vertex operator algebras associated with mathfrak {sl}_3 by quantum Hamiltonian reduction. In Fehily et al. (Comm Math Phys 385:859–904, 2021), we explored the representation theories of the simple quotients of these algebras when the level mathsf {k} is nondegenerate-admissible. Here, we combine these explorations with Adamović’s inverse quantum Hamiltonian reduction functors to study the modular properties of Bershadsky–Polyakov characters and deduce the associated Grothendieck fusion rules. The results are not dissimilar to those already known for the affine vertex operator algebras associated with mathfrak {sl}_2, except that the role of the Virasoro minimal models in the latter is here played by the minimal models of Zamolodchikov’s mathsf {W}_3 algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.