Abstract
We present a new modular proof method of termination for second-order computation, and report its implementation SOL. The proof method is useful for proving termination of higher-order foundational calculi. To establish the method, we use a variation of semantic labelling translation and Blanqui's General Schema: a syntactic criterion of strong normalisation. As an application, we apply this method to show termination of a variant of call-by-push-value calculus with algebraic effects and effect handlers. We also show that our tool SOL is effective to solve higher-order termination problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.