Abstract

The resolution, line edge roughness, and sensitivity (RLS) trade-off has fundamentally limited the lithographic performance of chemically amplified resists. Production of next-generation transistors using extreme ultraviolet (EUV) lithography depends on a solution to this problem. A resist that simultaneously increases the effective reaction radius of its photogenerated acids while limiting their diffusion radius should provide an elegant solution to the RLS barrier. Here, we describe a generalized synthetic approach to phthalaldehyde derivatives using sulfur(VI) fluoride exchange click chemistry that dramatically expands usable chemical space by enabling virtually any non-ionic photoacid generator (PAG) to be tethered to phthalaldehyde. The resulting polymers represent the first ever PAG-tethered self-immolative resists in an architecture that simultaneously displays high contrast, extraordinary sensitivity, and low roughness under EUV exposure. We believe this class of resists will ultimately enable researchers to overcome the RLS trade-off.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call