Abstract
A modular compact model for memristors which describes a wide range of memristive devices is presented. Its modular structure enables the modeling of various device behaviors by adopting different functions inside the comprising blocks. Rooted from the theoretical analysis on ideal memristors, the window function of the model is uniquely based on the constitutive relationship between charge and flux. This not only solves the stability issue from previously reported models, but also reveals that an equivalent charge-flux constitutive relationship can always be obtained from a variety of memristive devices. Simulations on three types of memristive devices demonstrate that the model is able to reflect common memristive device properties such as limited memristance switching range, linear/nonlinear memristance switching rate, threshold voltages for SET/RESET, nonlinear I-V characteristics, and device parameters with variations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Regular Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.