Abstract

Sequence-defined polymers with customizable sequences, monodispersity, substantial length, and large chemical diversity are of great interest to mimic the efficiency and selectivity of biopolymers. We report an efficient, facile, and scalable synthetic route to introduce many chemical functionalities, such as amino acids and sugars in nucleic acids and sequence-controlled oligophosphodiesters. Through achiral tertiary amine molecules that are perfectly compatible with automated DNA synthesis, readily available amines or azides can be turned into phosphoramidites in two steps only. Individual attachment yields on nucleic acids and artificial oligophosphodiesters using automated solid-phase synthesis (SPS) were >90% in almost all cases. Using this method, multiple water-soluble sequence-defined oligomers bearing a range of functional groups in precise sequences could be synthesized and purified in high yields. The method described herein significantly expands the library of available functionalities for nucleic acids and sequence-controlled polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.