Abstract

This paper proposes a novel modular spoke-type permanent-magnet machine for in-wheel traction applications. First, the topology and the operating principle are briefly introduced. Then, an analytical model of the proposed machine is deduced based on conformal mapping. A three-phase 48-slot 52-pole modular spoke-type permanent-magnet (PM) machine is designed based on the deduced mathematical model where the dimensions and power source are constrained the same as those of a commercial three-phase surface PM machine in electric motorcycles. Electromagnetic performance comparisons among the proposed machine, the commercial machine, and a conventional spoke-type PM machine are conducted based on finite-element analysis (FEA) with respect to magnetic field, back electromotive force (EMF), flux-weakening capability, torque capability, machine efficiency, etc. The results indicate that the proposed machine has an improved torque, a higher efficiency, and an extremely better flux-weakening capability than the conventional in-wheel machine. Finally, a prototype machine is manufactured and tested to verify both the analytically and FEA predicted results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call