Abstract
In recent years a wide variety of process algebras has been proposed in the literature. Often these process algebras are closely related: they can be viewed as homomorphic images, submodels or restrictions of each other. The aim of this paper is to show how the semantical reality, consisting of a large number of closely related process algebras, can be reflected, and even used, on the level of algebraic specifications and in process verifications. This is done by means of the notion of a module. The simplest modules are building blocks of operators and axioms, each block describing a feature of concurrency in a certain semantical setting. These modules can then be combined by means of a union operator +, an export operator □, allowing to forget some operators in a module, an operator H, changing semantics by taking homomorphic images, and an operator S which takes subalgebras. These operators enable us to combine modules in a subtle way, when the direct combination would be inconsistent. We show how auxiliary process algebra operators can be hidden when this is needed. Moreover it is demonstrated how new process combinators can be defined in terms of the more elementary ones in a clean way. As an illustration of our approach, a methodology is presented that can be used to specify FIFO-queues, and that facilitates verification of concurrent systems containing these queues.Key Words & Phrasesprocess algebraconcurrencymodular algebraic specificationsexport operatorunion of moduleshomomorphism operatorsubalgebra operatorFIFO-queueschaining operatorcommunication protocols1985 Mathematical Subject Classification68Q1068Q5568Q601980 Mathematical Subject Classification68B1068C0168D2568F201982 CR CategoriesC.2.2D.1.3D.2.1D.2.2F.1.1F.1.2F.3.2
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.