Abstract

In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength.

Highlights

  • Confocal microscopy has been used extensively in many areas of science since its invention in 1955 by Marvin Minsky [1]

  • With the development of micro electromechanical system (MEMS) technology, digital micromirror device (DMD) based confocal microscopes have gained popularity owing to the fact that DMD can be programmed to create a size-changeable reflection pinhole [5,6,7]

  • We present a modular scanning confocal microscope in which the pinhole and detector are replaced by a CCD camera [11]

Read more

Summary

Introduction

Confocal microscopy has been used extensively in many areas of science since its invention in 1955 by Marvin Minsky [1]. 3. The fiber detection module uses a 4 × Olympus microscope objective to couple light into a 25 μm diameter multimode fiber, which acts as the confocal pinhole. Intensity profiles of horizontal and vertical lines passing through the center of the polarity marker (O) in Fig 5(a) and 5(b) show a decrease of contrast and an increase of noise with the increase of pinhole size.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.