Abstract

AbstractIn this paper we report on the recent progress in computing bivariate polynomial resultants on Graphics Processing Units (GPU). Given two polynomials in ℤ[x,y], our algorithm first maps the polynomials to a prime field. Then, each modular image is processed individually. The GPU evaluates the polynomials at a number of points and computes univariate modular resultants in parallel. The remaining “combine” stage of the algorithm is executed sequentially on the host machine. Porting this stage to the graphics hardware is an object of ongoing research. Our algorithm is based on an efficient modular arithmetic from [1]. With the theory of displacement structure we have been able to parallelize the resultant algorithm up to a very fine scale suitable for realization on the GPU. Our benchmarks show a substantial speed-up over a host-based resultant algorithm [2] from CGAL ( www.cgal.org ).Keywordspolynomial resultantsmodular algorithmparallel computationsgraphics hardwareGPUCUDA

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.