Abstract

We construct explicit Drinfel'd twists of Jordanian type for the generalized Cartan type K Lie algebras in characteristic 0 and obtain the corresponding quantizations, especially their integral forms. By making modular reductions including modulo p and modulo p-restrictedness reduction, and base changes, we derive certain modular quantizations of the restricted universal enveloping algebra u(K(2n+1;1_)) for the restricted simple Lie algebra of Cartan type K in characteristic p. They are new families of noncommutative and noncocommutative Hopf algebras of dimension pp2n+1+1 (if 2n+4≢0(modp)) or pp2n+1 (if 2n+4≡0(modp)) over a truncated p-polynomials ring, which also contain the well-known Radford algebras (see [20]) as Hopf subalgebras. Some open questions are proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.