Abstract

Protein engineering shows a wide range of possibilities for designing properties in novel materials. Following inspiration from natural systems we have studied how combinations or duplications of protein modules can be used to engineer their interactions and achieve functional properties. Here we used cellulose binding modules (CBM) coupled to spider silk N-terminal domains that dimerize in a pH-sensitive manner. We showed how the pH-sensitive switching into dimers affected cellulose binding affinity in relation to covalent coupling between CBMs. Finally, we showed how the pH-sensitive coupling could be used to assemble cellulose nanofibers in a dynamic pH-dependent way. The work shows how novel proteins can be designed by linking functional domains from widely different sources and thereby achieve new functions in the self-assembly of nanoscale materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.