Abstract

The crystal structures of the new phosphorus oxide nitrides P40 O31 N46 and P74 O59 N84 , which were synthesized from amorphous phosphorus oxide nitride imide, exhibit complex frameworks built up from P(O,N)4 tetrahedra. The latter form various chain-like building units with various degrees of branching. These modular units can be combined and arranged in different ways, which leads to closely related structures and several disordered configurations in each compound. As the material was obtained by high-pressure high-temperature synthesis, the disorder is most likely a consequence of quenching a high-pressure phase with P(O,N)5 trigonal bipyramids. Under ambient conditions, P atoms are expected to relax by moving to the centers of the face-sharing tetrahedra that constitute the bipyramid. Diffraction patterns acquired with microfocused synchrotron radiation reveal that domains of both compounds are intergrown with H3 P8 O8 N9 , whose tetrahedral framework represents a cutout of the structures of both P40 O31 N46 and P74 O59 N84 . Powder diffraction patterns do not indicate any further phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.