Abstract

The increasing complexity of dynamic models in systems and synthetic biology poses computational challenges especially for the identification of model parameters. While modularization of the corresponding optimization problems could help reduce the “curse of dimensionality,” abundant feedback and crosstalk mechanisms prohibit a simple decomposition of most biomolecular networks into subnetworks, or modules. Drawing on ideas from network modularization and multiple-shooting optimization, we present here a modular parameter identification approach that explicitly allows for such interdependencies. Interfaces between our modules are given by the experimentally measured molecular species. This definition allows deriving good (initial) estimates for the inter-module communication directly from the experimental data. Given these estimates, the states and parameter sensitivities of different modules can be integrated independently. To achieve consistency between modules, we iteratively adjust the estimates for i...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call