Abstract

The nucleotide sequences of genes cpl7 and cpl9 of the Streptococcus pneumoniae bacteriophages Cp-7 and Cp-9, encoding the muramidases CPL-7 and CPL-9, respectively, have been determined. The N-terminal domains of CPL-7 and CPL-9 were virtually identical to that previously reported for the CPL-1 muramidase. The C-terminal domain of the CPL-7 muramidase, however, was different from those of the host amidase and the phage Cp-1 and Cp-9 lysozymes. Whereas all enzymes studied are characterized by repeated sequences at their C termini, the repeat-unit lengths are 20 amino acids (aa) in CPL-1, CPL-9 and in the host amidase, but 48 aa in CPL-7. Six repeated sequences represent the C-terminal domains of CPL-1, CPL-9 and the host amidase, and 2.8 perfect tandem repetitions that of CPL-7. The peculiar characteristics of the structure of CPL-7 muramidase correlate with its biochemical and biological properties. Whereas CPL-1, CPL-9 and the pneumococcal amidase strictly depend on the presence of choline-containing cell walls for activity, CPL-7 is able to degrade cell walls containing either choline or ethanolamine. These results support the previously postulated role for the C-terminal domain of these lytic enzymes in substrate recognition and provide further experimental evidence supporting the notion that the proteins have evolved by an exchange of modular units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.