Abstract

In this paper, we study third-order modular ordinary differential equations (MODE for short) of the following form $y'''+Q_2(z)y'+Q_3(z)y=0$, $z\in\mathbb{H}=\{z\in\mathbb{C} \,|\,\operatorname{Im}z>0 \}$, where $Q_2(z)$ and $Q_3(z)-\frac12 Q_2'(z)$ are meromorphic modular forms on ${\rm SL}(2,\mathbb{Z})$ of weight $4$ and $6$, respectively. We show that any quasimodular form of depth $2$ on ${\rm SL}(2,\mathbb{Z})$ leads to such a MODE. Conversely, we introduce the so-called Bol representation $\hat{\rho}\colon {\rm SL}(2,\mathbb{Z})\to{\rm SL}(3,\mathbb{C})$ for this MODE and give the necessary and sufficient condition for the irreducibility (resp. reducibility) of the representation. We show that the irreducibility yields the quasimodularity of some solution of this MODE, while the reducibility yields the modularity of all solutions and leads to solutions of certain ${\rm SU}(3)$ Toda systems. Note that the ${\rm SU}(N+1)$ Toda systems are the classical Pl\"ucker infinitesimal formulas for holomorphic maps from a Riemann surface to $\mathbb{CP}^N$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.