Abstract

The speech signal consists of linguistic information and also paralinguistic one such as emotion. The modern automatic speech recognition systems have achieved high performance in neutral style speech recognition, but they cannot maintain their high recognition rate for spontaneous speech. So, emotion recognition is an important step toward emotional speech recognition. The accuracy of an emotion recognition system is dependent on different factors such as the type and number of emotional states and selected features, and also the type of classifier. In this paper, a modular neural-support vector machine (SVM) classifier is proposed, and its performance in emotion recognition is compared to Gaussian mixture model, multi-layer perceptron neural network, and C5.0-based classifiers. The most efficient features are also selected by using the analysis of variations method. It is noted that the proposed modular scheme is achieved through a comparative study of different features and characteristics of an individual emotional state with the aim of improving the recognition performance. Empirical results show that even by discarding 22% of features, the average emotion recognition accuracy can be improved by 2.2%. Also, the proposed modular neural-SVM classifier improves the recognition accuracy at least by 8% as compared to the simulated monolithic classifiers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.