Abstract
Hydrogels have gained significant popularity as model platforms to study reciprocal interactions between cells and their microenvironment. While hydrogel tools to probe many characteristics of the extracellular space have been developed, fabrication approaches remain challenging and time-consuming, limiting multiplexing or widespread adoption. Thus, we have developed a modular fabrication approach to generate distinct hydrogel microenvironments within the same 96-well plate for increased throughput of fabrication as well as integration with existing high-throughput assay technologies. This approach enables in situ hydrogel mechanical characterization and is used to generate both elastic and viscoelastic hydrogels across a range of stiffnesses. Additionally, this fabrication method enabled a 3-fold reduction in polymer and up to an 8-fold reduction in fabrication time required per hydrogel replicate. The feasibility of this platform for two-dimensional (2D) cell culture applications was demonstrated by measuring both population-level and single-cell-level metrics via microplate reader and high-content imaging. Finally, a 96-well hydrogel array was utilized for three-dimensional (3D) cell culture, demonstrating the ability to support high cell viability. Together, this work demonstrates a versatile and easily adaptable fabrication approach that can support the ever-expanding tool kit of hydrogel technologies for cell culture applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.