Abstract

Arachidonic acid (ARA) is an essential fatty acid in human nutrition. Mortierella alpina, a filamentous fungus, has been widely used for the production of ARA. Here, we report a modular engineering approach that systematically eliminates metabolic bottlenecks in the multigene elongase/desaturase pathway and has led to significant improvements of the ARA titer. The elongase/desaturase pathway in Mortierella alpina was recast into two modules, namely, push and pull modules, based on its function in the ARA synthesis. Combinatorial optimization of these two modules has balanced the production and consumption of intermediate metabolites. A 2A peptide-based facile assembly platform that can achieve multigene expression as a polycistron was first established. The platform was then applied to express the push and pull modules in Mortierella alpina. In the shake-flask fermentation, the lipid and ARA contents of the engineered strain MA5 were increased by 1.2-fold and 77.6%, respectively, resulting in about fivefold increase of the ARA yield. The final ARA titer reached 4.4 g L-1 in shake-flask fermentation. The modular engineering strategies presented in this study demonstrate a generalized approach for the engineering of cell factories in the production of valuable metabolites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call