Abstract
We apply the theory of $\alpha$-induction of sectors which we elaborated in our previous paper to several nets of subfactors arising from conformal field theory. The main application are conformal embeddings and orbifold inclusions of SU(n) WZW models. For the latter, we construct the extended net of factors by hand. Developing further some ideas of F. Xu, our treatment leads canonically to certain fusion graphs, and in all our examples we rediscover the graphs Di Francesco, Petkova and Zuber associated empirically to the corresponding SU(n) modular invariants. We establish a connection between exponents of these graphs and the appearance of characters in the block-diagonal modular invariants, provided that the extended modular S-matrices diagonalize the endomorphism fusion rules of the extended theories. This is proven for many cases, and our results cover all the block-diagonal SU(2) modular invariants, thus provide some explanation of the A-D-E classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.