Abstract
In this paper, the problem of integrated longitudinal and lateral vehicle stability control is addressed using a modular optimal control structure. The optimization process of the high level model predictive control (MPC) controller determines required longitudinal force and yaw moment adjustments to minimize the error between vehicle longitudinal and lateral vehicle stability dynamic states with respect to the target courses. The low level controller is designed to optimally regulate torque at each wheel based on the control inputs of the high level controller, and distribute required torque between the wheels via actuation system. The actuation system that is utilized to implement the proposed control structure functions based on all-wheel drive technology that can provide active control of both traction and yaw moment control with differential torque. The multi-layered structure of the control system allows modularity in design. The performance of the control structure is investigated by conducting experimental tests. The experimental tests have been performed on an electric Chevrolet Equinox vehicle equipped with four independent motors. The results show that the integration of the vehicle longitudinal and lateral dynamics preserves vehicle stability in a planar motion and improves the vehicle dynamic response, especially in challenging driving maneuvers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.