Abstract

Contemporary high-performance computing (HPC) applications encompass a broad range of distinct I/O strategies and are often executed on a number of different compute platforms in their lifetime. These large-scale HPC platforms employ increasingly complex I/O subsystems to provide a suitable level of I/O performance to applications. Tuning I/O workloads for such a system is nontrivial, and the results generally are not portable to other HPC systems. I/O profiling tools can help to address this challenge, but most existing tools only instrument specific components within the I/O subsystem that provide a limited perspective on I/O performance. The increasing diversity of scientific applications and computing platforms calls for greater flexibility and scope in I/O characterization.In this work, we consider how the I/O profiling tool Darshan can be improved to allow for more flexible, comprehensive instrumentation of current and future HPC I/O workloads. We evaluate the performance and scalability of our design to ensure that it is lightweight enough for full-time deployment on production HPC systems. We also present two case studies illustrating how a more comprehensive instrumentation of application I/O workloads can enable insights into I/O behavior that were not previously possible. Our results indicate that Darshan's modular instrumentation methods can provide valuable feedback to both users and system administrators, while imposing negligible overheads on user applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.