Abstract

Coset diagrams for the orbit of the modular group G = 〈x, y: x2 = y3 = 1〉 acting on real quadratic fields give some interesting information. By using these coset diagrams, we show that for a fixed value of n, a non-square positive integer, there are only a finite number of real quadratic irrational numbers of the form , where θ and its algebraic conjugate have different signs, and that part of the coset diagram containing such numbers forms a single circuit (closed path) and it is the only circuit in the orbit of θ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.