Abstract

We study a proposal of D'Hoker and Phong for the chiral superstring measure for genus three. A minor modification of the constraints they impose on certain Siegel modular forms leads to a unique solution. We reduce the problem of finding these modular forms, which depend on an even spin structure, to finding a modular form of weight 8 on a certain subgroup of the modular group. An explicit formula for this form, as a polynomial in the even theta constants, is given. We checked that our result is consistent with the vanishing of the cosmological constant. We also verified a conjecture of D'Hoker and Phong on modular forms in genus 3 and 4 using results of Igusa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.