Abstract
DNAzyme-based sensors remain at the forefront of metal-ion imaging efforts, but most lack the subcellular precision necessary to their applications in specific organelles. Here, we seek to overcome this limitation by presenting a DNAzyme-based biosensor technology for spatiotemporally controlled imaging of metal ions in mitochondria. A DNA nanodevice was constructed by integrating an optically activatable DNAzyme sensor and an upconversion nanoparticle with an organelle-targeting signal. We exemplify that this approach allows for mitochondria-specific imaging of Zn2+ in living cells in a near-infrared light-controlled manner. Based on this, the system is used for the monitoring of mitochondrial Zn2+ during drug treatment in a cellular model of ischemia insult. Furthermore, the DNA nanodevice is employed to assess dynamic Zn2+ change and pharmacological interventions in an injury cell model of Zn2+ toxicity. This method paves the way for engineering of DNAzyme sensors to investigate the pathophysiological roles of metal ions at the subcellular level.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.